15 research outputs found

    Characterizing tree species diversity in the tropics using full-waveform lidar data

    Get PDF
    Tree species diversity is of paramount value to maintain forest health and to ensure that forests are able to provide all vital functions, such as creating oxygen, that are needed for mankind to survive. Most of the world’s tree species grow in the tropical region, but many of them are threatened with extinction due to increasing natural and human-induced pressures on the environment. Mapping tree species diversity in the tropics is of high importance to enable effective conservation management of these highly diverse forests. This dissertation explores a new approach to mapping tree species diversity by using information on the vertical canopy structure derived from full-waveform lidar data. This approach is of particular interest in light of the recently launched Global Ecosystem Dynamics Investigation (GEDI), a full-waveform spaceborne lidar. First, successful derivation of vertical canopy structure metrics is ensured by comparing canopy profiles from airborne lidar data to those from terrestrial lidar. Then, the airborne canopy profiles were used to map five successional vegetation types in Lopé National Park in Gabon, Africa. Second, the relationship between vertical canopy structure and tree species richness was evaluated across four study sites in Gabon, which enabled mapping of tree species richness using canopy structure information from full-waveform lidar. Third, the relationship between canopy structure and tree species richness across the tropics was established using field and lidar data collected in 16 study sites across the tropics. Finally, it was evaluated how the methods and applications developed here could be adapted and used for mapping pan-tropical tree species diversity using future GEDI lidar data products

    Exploring the relation between remotely sensed vertical canopy structure and tree species diversity in Gabon

    Get PDF
    Mapping tree species diversity is increasingly important in the face of environmental change and biodiversity conservation. We explore a potential way of mapping this diversity by relating forest structure to tree species diversity in Gabon. First, we test the relation between canopy height, as a proxy for niche volume, and tree species diversity. Then, we test the relation between vertical canopy structure, as a proxy for vertical niche occupation, and tree species diversity. We use large footprint full-waveform airborne lidar data collected across four study sites in Gabon (Lopé, Mabounié, Mondah, and Rabi) in combination with in situ estimates of species richness (S) and Shannon diversity (H′). Linear models using canopy height explained 44% and 43% of the variation in S and H′ at the 0.25 ha resolution. Linear models using canopy height and the plant area volume density profile explained 71% of this variation. We demonstrate applications of these models by mapping S and H′ in Mondah using a simulated GEDI-TanDEM-X fusion height product, across the four sites using wall-to-wall airborne lidar data products, and across and between the study sites using ICESat lidar waveforms. The modeling results are encouraging in the context of developing pan-tropical structure diversity models applicable to data from current and upcoming spaceborne remote sensing missions

    The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography

    Get PDF
    Obtaining accurate and widespread measurements of the vertical structure of the Earths forests has been a longsought goal for the ecological community. Such observations are critical for accurately assessing the existing biomass of forests, and how changes in this biomass caused by human activities or variations in climate may impact atmospheric CO2 concentrations. Additionally, the three-dimensional structure of forests is a key component of habitat quality and biodiversity at local to regional scales. The Global Ecosystem Dynamics Investigation (GEDI) was launched to the International Space Station in late 2018 to provide high-quality measurements of forest vertical structure in temperate and tropical forests between 51.6 N & S latitude. The GEDI instrument is a geodetic-class laser altimeter/waveform lidar comprised of 3 lasers that produce 8 transects of structural information. Over its two-year nominal lifetime GEDI is anticipated to provide over 10 billion waveforms at a footprint resolution of 25 m. These data will be used to derive a variety of footprint and gridded products, including canopy height, canopy foliar profiles, Leaf Area Index (LAI), sub-canopy topography and biomass. Additionally, data from GEDI are used to demonstrate the efficacy of its measurements for prognostic ecosystem modeling, habit and biodiversity studies, and for fusion using radar and other remote sensing instruments. GEDI science and technology are unique: no other space-based mission has been created that is specifically optimized for retrieving vegetation vertical structure. As such, GEDI promises to advance our understanding of the importance of canopy vertical variations within an ecological paradigm based on structure, composition and function

    The NASA AfriSAR campaign: Airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions

    Get PDF
    In 2015 and 2016, the AfriSAR campaign was carried out as a collaborative effort among international space and National Park agencies (ESA, NASA, ONERA, DLR, ANPN and AGEOS) in support of the upcoming ESA BIOMASS, NASA-ISRO Synthetic Aperture Radar (NISAR) and NASA Global Ecosystem Dynamics Initiative (GEDI) missions. The NASA contribution to the campaign was conducted in 2016 with the NASA LVIS (Land Vegetation and Ice Sensor) Lidar, the NASA L-band UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar). A central motivation for the AfriSAR deployment was the common AGBD estimation requirement for the three future spaceborne missions, the lack of sufficient airborne and ground calibration data covering the full range of ABGD in tropical forest systems, and the intercomparison and fusion of the technologies. During the campaign, over 7000 km2 of waveform Lidar data from LVIS and 30,000 km2 of UAVSAR data were collected over 10 key sites and transects. In addition, field measurements of forest structure and biomass were collected in sixteen 1-hectare sized plots. The campaign produced gridded Lidar canopy structure products, gridded aboveground biomass and associated uncertainties, Lidar based vegetation canopy cover profile products, Polarimetric Interferometric SAR and Tomographic SAR products and field measurements. Our results showcase the types of data products and scientific results expected from the spaceborne Lidar and SAR missions; we also expect that the AfriSAR campaign data will facilitate further analysis and use of waveform lidar and multiple baseline polarimetric SAR datasets for carbon cycle, biodiversity, water resources and more applications by the greater scientific community.Additional co-authors: Bryan Blair, Christy Hansen, Yunling Lou, Ralph Dubayah, Scott Hensley, Carlos Silva, John R Poulsen, Nicolas Labrière, Nicolas Barbier, David Kenfack, Memiaghe Herve, Pulchérie Bissiengou, Alfonso Alonso, Ghislain Moussavou, Simon Lewis, Kathleen Hibbar

    The NASA AfriSAR campaign: Airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions

    Get PDF
    International audienceIn 2015 and 2016, the AfriSAR campaign was carried out as a collaborative effort among international space and National Park agencies (ESA, NASA, ONERA, DLR, ANPN and AGEOS) in support of the upcoming ESA BIOMASS, NASA-ISRO Synthetic Aperture Radar (NISAR) and NASA Global Ecosystem Dynamics Initiative (GEDI) missions. The NASA contribution to the campaign was conducted in 2016 with the NASA LVIS (Land Vegetation and Ice Sensor) Lidar, the NASA L-band UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar). A central motivation for the AfriSAR deployment was the common AGBD estimation requirement for the three future spaceborne missions, the lack of sufficient airborne and ground calibration data covering the full range of ABGD in tropical forest systems, and the intercomparison and fusion of the technologies. During the campaign, over 7000 km2 of waveform Lidar data from LVIS and 30,000 km2 of UAVSAR data were collected over 10 key sites and transects. In addition, field measurements of forest structure and biomass were collected in sixteen 1-hectare sized plots. The campaign produced gridded Lidar canopy structure products, gridded aboveground biomass and associated uncertainties, Lidar based vegetation canopy cover profile products, Polarimetric Interferometric SAR and Tomographic SAR products and field measurements. Our results showcase the types of data products and scientific results expected from the spaceborne Lidar and SAR missions; we also expect that the AfriSAR campaign data will facilitate further analysis and use of waveform lidar and multiple baseline polarimetric SAR datasets for carbon cycle, biodiversity, water resources and more applications by the greater scientific community

    Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission

    Get PDF
    NASA’s Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI’s footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI’s waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.Additional co-authors: Scott J. Goetz, Hao Tang, Michelle Hofton, Bryan Blair, Scott Luthcke, Lola Fatoyinbo, Alfonso Alonso, Hans-Erik Andersen, Paul Aplin, Timothy R. Baker, Nicolas Barbier, Jean Francois Bastin, Peter Biber, Pascal Boeckx, Jan Bogaert, Luigi Boschetti, Peter Brehm Boucher, Doreen S. Boyd, David F.R.P. Burslem, Sofia Calvo-Rodriguez, Jérôme Chave, Robin L. Chazdon, David B. Clark, Deborah A. Clark, Warren B. Cohen, David A. Coomes, Piermaria Corona, K.C. Cushman, Mark E.J. Cutler, James W. Dalling, Michele Dalponte, Jonathan Dash, Sergio de-Miguel, Songqiu Deng, Peter Woods Ellis, Barend Erasmus, Patrick A.Fekety, Alfredo Fernandez-Landa, Antonio Ferraz, Rico Fischer, Adrian G. Fisher, Antonio García-Abril, Terje Gobakken, Jorg M. Hacker, Marco Heurich, Ross A. Hill, Chris Hopkinson, Huabing Huang, Stephen P. Hubbell, Andrew T. Hudak, Andreas Huth, Benedikt Imbach, Masato Katoh, Elizabeth Kearsley, David Kenfack, Natascha Kljun, Nikolai Knapp, Kamil Král, Martin Krůček, Nicolas Labrière, Simon L. Lewis, Marcos Longo, Richard M. Lucas, Russell Main, Jose A. Manzanera, Rodolfo Vásquez Martínez, Renaud Mathieu, Herve Memiaghe, Victoria Meyer, Abel Monteagudo Mendoza, Alessandra Monerris, Paul Montesano, Felix Morsdorf, Erik Næsset, Laven Naidoo, Reuben Nilus, Michael O’Brien, David A. Orwig, Konstantinos Papathanassiou, Geoffrey Parker, Christopher Philipson, Oliver L. Phillips, Jan Pisek, John R. Poulsen, Hans Pretzsch, Christoph Rüdiger, Sassan Saatchi, Arturo Sanchez-Azofeifa, Nuria Sanchez-Lopez, Robert Scholes, Carlos A. Silva, Marc Simard, Andrew Skidmore, Krzysztof Stereńczak, Mihai Tanase, Chiara Torresan, Ruben Valbuena, Hans Verbeeck, Tomas Vrska, Konrad Wessels, Joanne C. White, Eliakimu Zahabu, Carlo Zgragge

    Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission

    Get PDF
    NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (similar to 25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available

    Deriving comprehensive forest structure information from mobile laser scanning observations using automated point cloud classification

    No full text
    The advent of mobile laser scanning has enabled time efficient and cost effective collection of forest structure information. To make use of this technology in calibrating or evaluating models of forest and landscape dynamics, there is a need to systematically and reproducibly automate the processing of LiDAR point clouds into quantities of forest structural components. Here we propose a method to classify vegetation structural components of an open-understorey eucalyptus forest, scanned with a ‘Zebedee’ mobile laser scanner. It detected 98% of the tree stems (N = 50) and 80% of the elevated understorey components (N = 15). Automatically derived DBH values agreed with manual field measurements with r² = 0.72, RMSE = 3.8 cm, (N = 27), and total basal area agreed within 1.5%. Though this methodological study was restricted to one ecosystem, the results are promising for use in applications such as fuel load, habitat structure, and biomass estimations.The support of the Commonwealth of Australia through the Cooperative Research Centre program is gratefully acknowledged. The authors thank CSIRO for lending the Zebedee unit, Robert Zlot (CSIRO) for pre-processing the data and Peter Hairsine for his help with revisions

    Distinguishing vegetation types with airborne waveform lidar data in a tropical forest-savanna mosaic : a case study in Lopé National Park, Gabon

    No full text
    Tropical forest vegetation structure is highly variable, both vertically and horizontally, and provides habitat to a large diversity of species. The forest-savanna mosaic in the northern part of Lope National Park, Gabon, has a large and complex variation in vegetation structure along a successional gradient. The goal of this research is to assess whether large footprint full-waveform lidar data can be used to distinguish successional vegetation types based on their vertical structure in this area. Eleven vegetation metrics were derived from the lidar waveforms: canopy height, canopy fractional cover, total Plant Area Index (PAI) and vertical profile of PAI. The PAI profiles from airborne waveform lidar showed good agreement with those from Terrestrial Laser Scanning, sampled at eight field plots across different vegetation types (r(2) = 0.95, RMSE = 0.63, bias = 0.41). The agreement further strengthened our confidence that lidar waveforms can be used to distinguish between the five vegetation types, within the limits of the sampled structure, because TLS was known to provide distinct PAI profiles for these vegetation types. We then employed a Random Forest model, trained with 193 locations of known vegetation type, to classify the entire study area into five successional vegetation types (classification accuracy = 81.3%). The resulting predictive map revealed the overall spatial pattern of vegetation types across the study area. Our results suggest that lidar-derived vegetation profiles can provide valuable information on vegetation type and successional stage. This, in turn, can further help to improve habitat and biodiversity conservation and forest management activities
    corecore